
ActiveX
Programming
For The
7000 RF Terminal

How The System Works

The RF Terminal has a 6x24 LCD screen and up to 99 voice messages which can be
activated by the host user program. Messages from the host user program are written to
the serial port to which the applicable Base Station is attached. Up to 64 RF Terminals
can be controlled by one base station, so the host user program must address the
applicable RF Terminal by its ID character. When the host receives a message from the
Base Station, it will receive data with the Terminal ID also included (not true for one-way
mode).

There is no programming on the RF Terminal itself. All programming is on the host
computer. Any language and/or platform that can read/write to a serial port can easily
control a network of RF Terminals.

Some users will prefer sending the formatting sequences directly over the serial port
using the Low Level Commands. Others will prefer the Windows ActiveX and TCP/IP
controls.

This is How The RF Terminal Operates
Messages from the host user program are sent to the Base Station (via the serial port),
then from the Base Station to the RF Terminal. The Terminal responds back to the Base
with data and its Terminal ID. The data is then transmitted from the Base to the host
computer where it is processed and the next command is sent out. Each RF Terminal has
a unique Terminal ID, allowing a single Base Station to handle up to 64 Terminals.

Dialog is established when a Terminal SIGNS ON to the RF network. The host computer
application waits until a Terminal SIGNS ON, then begins its processing by sending the
first prompt out to the Terminal via the Base Station. If the Terminal does not receive a
prompt from the host, it goes into "sleep" mode, "waking up" and checking with the Base
periodically to see if it has any messages waiting. This conserves battery power and
reduces radio traffic.

We have tried to make it easy for the programmer to communicate with the Base Station;
no protocol or hand-shaking is required. This type of communication is fine when the
Base is located only a few feet from the serial port it is connected to. If you are locating
your Base Station farther away, use shielded, grounded (bare wire Pin 1 touching shield)
cable, lower baud rates and possibly, line drivers for very noisy environments.

Before You Begin

Before you begin programming, there are some factors you should take into
consideration during the planning process.

• Plan for system failures. This includes hardware failures, software failures and
operator failures. In order to create an efficient application, you must put some
thought into what you will do when different parts of the system fail.

• Look for All Errors. Be sure your program is trapping all possible error
conditions that the Base Station may return to you. The list includes:

Sequence Errors detected
Illegal Command detected
Base Station Initialized
Addressing a Terminal Not Signed In

Forgetting to program for these error conditions is a common mistake. Even
though you think your code will never make a mistake, take advantage of the
feedback that the Base Station provides.

• Parse the Returned Strings thoroughly. Don't assume anything about the next
response from the Base to your program and look only for the partial string such
as the ID only; parse the returned string completely and be sure you are
examining every possibility. Failure to do so is a common mistake.

• Plan for expansion. You may start small (1 Base/1 Terminal) but try to create an
application that will allow for easy expansion and addition - especially of
Terminals.

• Site Evaluation. Site Testing does not require that you have an application up
and running and can save you time when you do sit down to create your
program if you already know what you will be dealing with in terms of Base
Stations and Relays.

• Use the Demo Programs. The demo programs can at least allow you to see how
the system functions and whether you can anticipate any system-wide problems.
The demo programs should also be used as a response-time benchmark.

Planning For Failures

Hardware Failures
Let's assume that each part of the system has failed. How are you going to know what has
happened and how are you going to recover?

• The most frequent failures are at the Terminal level. If a Terminal has a
hardware failure, it will not be able to SIGN OUT. It is possible for the Terminal
operator to press the ON/OFF key or the F1 key by accident, forcing the
Terminal to SIGN OUT - sometimes in the middle of a transaction. This happens
at battery-changing time also. You need to plan for partial transactions – do you
trash the data you do have and start over, or pick up where you left off?

• Keep in mind that if a Terminal has SIGNed OUT in mid-transaction, the Base
Station clears any pending message for that Terminal before it will allow it to
SIGN ON again. Make allowances to re-send messages or prompts that were
cleared upon SIGN ON if necessary.

• Relay Station failures are often cable-related. If a Terminal puts out a "Who Can
Hear Me?" message and a Relay that is for some reason not connected to the
Base Station (bad cable, cut cable, broken connectors) hears it, it answers with
the message:

Relay n Cannot Be
Heard by the Base
Notify Supervisor
Press Any Key

At this point, it is up to the operator to notify someone that the Relay is not
communicating with the Base and to check the cabling first. There is no message
sent to the host, so it is very important that the operator that receives this
message notify someone immediately.

Operator Errors
• Plan on your operator walking out of range and going to lunch in the middle of a

transaction. What do you do with the data you do have, and where are you going
to start up again?

• Let's say your operator is SIGNED ON and decides it's time to take a break.
Instead of pressing the F1 key to SIGN OUT, he presses the OFF key. Pressing
the OFF key is OK (it will SIGN him OUT) but there is a delay until the SIGN
OUT is acknowledged. Because of the delay, the operator might think he didn't
press the key hard enough and press it again - this time actually powering down
the Terminal before the SIGN OUT was complete. If this happens, you need to
plan to resend the last prompt to the Terminal when he SIGNs ON again.

PromptCOM: The WDterm ActiveX Control

Drop-in components are tools that are added to your programming environment "tool
kit". There are a variety of different technologies around for implementing a drop-in
component such as VBX (for Visual Basic) and VCL (for Delphi and C Builder) and
COM (ActiveX). Only the ActiveX variety are widely compatible with almost all
development environments.

PromptCOM/ActiveX is a drop in COM component that allow programmers to easily add
the ability to send prompts to and receive data from their R/F Terminal via an RF Base
Station. It is compatible with Visual Basic, Visual C++, Delphi, and most other 32-bit
development platforms. See the help file for installation instructions.

Programming Considerations
Before making any method calls, make sure to:

• Set the COM port properties (device name, baud, parity, bits, etc.) as desired.
Make sure the port is closed (call CloseDevice) before making changes to any
of the port settings.

• Call the OpenDevice method. This activates the COM port used by this instance
of the WDterm control.

• Set the ActiveTerminal property to identify the terminal on which you desire to
operate. You can change the ActiveTerminal at any time in order to direct
commands to appropriate terminals.

Test For Good Communication

• Implement an event handler for OnTermBaseRegister that causes a beep or
displays a message when called. If communication between the host PC and the
base station is good, your event handler will fire when your program is running
and you power up an attached base station.

Multiple Base Stations

• For installations using multiple base stations attached to a single host PC (these
were called "channels" in PromptCOM/DLL) simply add a Wdterm control to
your application for each base station.

Terminal Tracking

• Since you get one set of event handlers for each base station, you will need
some scheme for keeping track of where each terminal (up to 64 per base
station) is in its transaction sequence. One possible solution is to use a
"state"variable for each terminal (perhaps stored in an array). Test the state
variable to determine the next prompt for any given terminal.

• It is very important to keep track of "login status" for each terminal. Every
SignOut event should have an associated SignIn event and a given terminal
should not be allowed to SignIn twice without an intervening SignOut. Multiple
SignIns from one terminal without appropriate SignOuts indicate either:

1. A terminal going out of range and having its power cycled before
returning within range OR

2. Two (or more) terminals using the same ID (terminal ID conflict).

Concepts
When you use drop-in components in your program you will follow the standard object-
oriented programming paradigm that uses properties, methods, and events to implement
the functionality of the drop-in component.

• Properties are the various configuration variables used by the drop-in
component. An example of a property is the ComDeviceName setting.

• Methods are function calls used to issue commands and access features of the
drop-in component. An example of a method is sending an Input command to
the terminal.

• Events are function definitions placed in your application’s source code. The
function definitions in your source code are called Event Handlers. The skeleton
structure of the event handler’s source code is automatically generated. The code
in the Event Handler is called ("fired") by the drop-in component when a
specific event occurs. An example of an event is when a terminal returns data
and the OnTermData event is fired.

The details of how to access Properties/Methods/Events varies between development
platforms. Details of how it works in some of the most popular platforms is illustrated in
the samples included with the RF Utilities CD or available for download from our
website at:

http://www.barcodehq.com/utilities/WDterminal.exe

Properties
Properties are the various configuration variables used by the WDterm control. They are
directly assignable in your application (e.g. "WDterm.ActiveTerminal = 5") and can be
set in your development environment’s object browser.

Important: Except for ActiveTerminal and Quiet, all properties require the serial port to
be "closed" before they can be changed. Use the CloseDevice method before setting
properties and then call OpenDevice to re-open the serial port.

Note that your development environment may show more properties for the WDterm
control than are listed here. This is normal. You may ignore properties you see that are
not listed here.

ActiveTerminal
Valid values: 0 through 63.
Definition: This is the terminal ID (0-63) to which method call instructions are

directed .

ComDeviceName
Valid values: COM1-COM16
Definition: This is the serial port that this instance of the control will use. If you have

more than one base station, drop in another Wdterm control and set its
ComDeviceName for your other COM port(s).

ComBaudValue
Valid values: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.
Definition: This is the serial port speed setting and must match the base station

setting.

ComParity
Valid values: None, Even, Odd.
Definition: This is a serial port setting and must match the base station setting.

WDterm may allow other settings but those listed here are the only ones
compatible with current version base stations.

ComDataBits
Valid values: 7, 8
Definition: This is a serial port setting and must match the base station setting.

WDterm may allow other settings but those listed here are the only ones
compatible with current version base stations.

ComStopBits
Valid values: 1, 2.
Definition: This is a serial port setting and must match the base station setting.

WDterm may allow other settings but those listed here are the only ones
compatible with current version base stations.

Quiet
Valid values: True, False.
Definition: If Quiet is set to True then any status and error message generated by

WDterm will be suppressed.

Methods
Methods are commands that you issue to
the WDterm control. All of the
"Inputxxx" commands cause the
terminal to wait for operator input.

Note that your development environment
may show more available methods for
the WDterm control than are listed here.
This is normal. You may ignore methods
you see that are not listed here.

Important: When your application starts
up, the serial port is "closed". You must
call OpenDevice before other method
calls will work.

Except for the ReInitAll method, all
methods use the ActiveTerminal
property to identify the terminal to use.

OpenDevice (All Terminal Versions)
Function: Opens the communications (serial) port. This must be called before any of

the methods described below. Make sure to set all Properties as desired before
calling this method (except ActiveTerminal or Quiet).

CloseDevice (All Terminal Versions)
Function: Closes the communications (serial) port. This must be called before

changing any of the Property settings (except ActiveTerminal or Quiet). When
your application starts up, the serial port is "closed". You must call OpenDevice
before other method calls will work.

Color Codes for 7001 (15-line) Terminal

0 - aqua
1 - black
2 - blue
3 - fuchsia
4 - gray
5 - green
6 - lime
7 - maroon
8 - navy
9 - olive
10 - purple
11 - red
12 - silver
13 - teal
14 - white
15 - yellow

DefineFormat (15-Line Terminal Only)
Parameters: font, linecount
Function: This adds a line formatting definition. This command is called multiple

times to build a display formatting definition for multiple lines which is then sent
to the ActiveTerminal by the SendFormat command.

Font is an integer code: 0="small", 1="medium", 2="large"

Linecount is a number 1-15 indicating the number of lines to apply the font
selection to.

If only one line is defined (that is DefineFormat is called only once with a
linecount of "1"), then after SendFormat is called, only one line will be available
for display on the ActiveTerminal.

There are a limited number of lines available depending on the font size(s)
chosen. Each font has a defined height:

• small: 16
• medium: 24
• large: 32

The total height of the defined lines cannot exceed 240. If it does, an error code
is generated (see CheckError) and the SendFormat command is ignored.

There is limited display width available for text. Depending on the font you
select for a line:

• small: 26 characters
• medium: 20 characters
• large: 13 characters

If you try to send prompt or display text longer than this, it will be truncated and
an error code is generated (see CheckError).

Must be followed by a "SendFormat" method call and then an "Inputxxx"
method call to take effect.

SendFormat (15-Line Terminal Only)
Parameters: FG, BG
Function: Sends to the ActiveTerminal the current Format Definition as created by one

or more calls to the DefineFormat method. It also sets the user-default display
foreground and background colors. FG and BG are ForeGround and BackGround
colors for the 7001 (15-line) terminal (See Color Codes).

Must be followed by an "Inputxxx" method call to take effect.

InputAny (All Terminal Versions)
Parameters: line, position, prompt, shifted, timestamped

InputAnyColor (15-Line Terminal Only)
Parameters: line, position, prompt, shifted, timestamped, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for data to be entered from either terminal keypad or scanner. If shifted is
set to "true", the terminal will start in shifted mode. Timestamped appends a
(hhmmss) prefix to the returned data. FG and BG are ForeGround and
BackGround colors for the 7001 (15-line) terminal (See Color Codes).

InputKeyBd (All Terminal Versions)
Parameters: line, position, prompt, shifted, timestamped

InputKeyBdColor (15-Line Terminal Only)
Parameters: line, position, prompt, shifted, timestamped, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for data to be entered from the terminal keypad only. If shifted is set to
“true”, the terminal will start in shifted mode. Timestamped appends a (hhmmss)
prefix to the returned data. FG and BG are ForeGround and BackGround colors
for the 7001 (15-line) terminal (See Color Codes).

InputExtKeyBd (All Terminal Versions)
Parameters: line, position, prompt

InputExtKeyBdColor (15-Line Terminal Only)
Parameters: line, position, prompt, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for data to be received from the PS/2 keyboard attached using an adaptor
to the terminal serial port. Waiting for external keyboard input can be bypassed by
pressing the enter key on the terminal which will send an empty data string to the
host (fires the OnTermData event handler). External keyboards are supported by
terminals using firmware version RFU1010 or later. FG and BG are ForeGround
and BackGround colors for the 7001 (15-line) terminal (See Color Codes).

InputScanner (All Terminal Versions)
Parameters: line, position, prompt, allowbreakout, timestamped

InputScannerColor (15-Line Terminal Only)
Parameters: line, position, prompt, allowbreakout, timestamped, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for data to be entered from the terminal scanner only. Setting
allowbreakout to true allow user to "break out" of scanner only mode by pressing
the end key on the terminal. A termID+CR will be sent to the host. FG and BG are
ForeGround and BackGround colors for the 7001 (15-line) terminal (See Color
Codes).

InputYesNo (All Terminal Versions)
Parameters: line, position, prompt

InputYesNoColor (15-Line Terminal Only)
Parameters: line, position, prompt, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for a Yes (Enter key or C key) or a No (0 key or B key) from the terminal
keypad.

Note: C and B keys are used to facilitate keypad entry while
scanning with the integrated laser.

FG and BG are ForeGround and BackGround colors for the 7001 (15-line)
terminal (See Color Codes).

InputPassword (All Terminal Versions)
Parameters: line, position, prompt, shifted

InputPasswordColor (15-Line Terminal Only)
Parameters: line, position, prompt, shifted, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for data to be entered from the terminal keypad only. The entered data is
not displayed on the terminal. FG and BG are ForeGround and BackGround
colors for the 7001 (15-line) terminal (See Color Codes).

InputSerial (All Terminal Versions)
Parameters: line, position, prompt

InputSerialColor (15-Line Terminal Only)
Parameters: line, position, prompt, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and position

and wait for data to be received through the terminal serial port. Waiting for serial
input can be bypassed by pressing the enter key on the terminal which will send
an empty data string to the host (fires the OnTermData event handler). FG and

BG are ForeGround and BackGround colors for the 7001 (15-line) terminal (See
Color Codes).

OutputSerial (All Terminal Versions)
Parameters: data
Function: This instructs the ActiveTerminal to send data to the terminal’s serial port.

Data must be less than 232 characters in length for each call to OutputSerial. If
you are sending data to a printer attached to the terminal, make sure to set the
Protocol parameter in the RF Terminal to XON/XOFF. See the RF Terminal
Manual for details.

Special Considerations:

• After an OutputSerial call is successfully completed, the Base Station
will return (as data) a CR (ASCII #13 Carriage Return) for the terminal.
This will fire the OnTermData event. If there is a problem with the
serial data you will see an error message at the client and in the log (if
enabled). If the data string is too long, the OnTermIllegalCommand
event will be fired.

• Do not call OutputSerial for the same Base Station and Terminal again
until a return code is received.

• Do not call an Inputxxx method for the same Base Station and Terminal
until a return code is received.

• If you need to send more than 232 characters, send the first part, wait
for the acknowledge (#13) and then send the next part.

• Calls to OutputSerial cannot be combined with other method calls

• See the RF Terminal Manual for details.

SendDisplay (All Terminal Versions)
Parameters: line, position, prompt

SendDisplayColor (15-Line Terminal Only)
Parameters: line, position, prompt, FG, BG
Function: This instructs the ActiveTerminal to display the prompt at line and

position. Must be followed by an "Input" method call to take effect. FG and BG
are ForeGround and BackGround colors for the 7001 (15-line) terminal (See
Color Codes).

ClearScreen (All Terminal Versions)
Function: This instructs the ActiveTerminal to clear its display. Must be followed by

an "Input" method call to take effect. Does not work on older 4-line terminals.
Instead, use multiple ClearLine calls.

ClearLine (All Terminal Versions)
Parameters: line
Function: This instructs the ActiveTerminal to clear the specified line on its display.

Must be followed by an "Input" method call to take effect.

SendDate (All Terminal Versions)
Parameters: line
Function: This instructs the ActiveTerminal to display date and time on the specified

line number. Must be followed by an "Input" method call to take effect.

Beep (All Terminal Versions)
Parameters: count
Function: This instructs the ActiveTerminal to beep count times. Count may be a

value from 1 to 9. Must be followed by an "Input" method call to take effect.

PlayVoice (All Terminal Versions)
Parameters: msgnum
Function: This instructs the ActiveTerminal to play voice message number msgnum.

Msgnum may be a value from 1 to 99. Must be followed by an "Input" method call
to take effect.

ReInit (All Terminal Versions)
Function: This instructs the ActiveTerminal to re-initialize. Must be followed by an

"Input" method call to take effect.

NOTE: Base Stations using EEPROM versions prior to 9079 will cause the
message "Base Reinitialized..." to be displayed on the terminal. Only the
terminal has actually been re-initialized. Later Base Stations use the message
"Buffer Reinitialized..." to indicate a single terminal re-initialization.

ReInitAll (All Terminal Versions)
Function: Instructs all attached terminals to re-initialize.

OutputRaw (All Terminal Versions)
Parameters: data
Function: This allows you to override all of PromptCOM’s Input methods (or any

other method, for that matter) and send whatever data you want to the Base
Station. This is most useful for adapting old code uses the PromptCOM DLL to
use the new ActiveX system.

MapTermID (All Terminal Versions)
Parameters: TermNumber
Function: Returns the actual terminal ID letter code for a given terminal number. Use

the returned character to match with the Terminal ID programmed into a RF
Terminal.

GetErrCode (All Terminal Versions)
Function: Returns code for the most recent error. Calling this method resets the Error

Code to 0.
Error Codes

0. No Error
1. Command Data Too Long
2. Error on Close Device
3. Serial Out Data Too Long
4. Invalid Terminal ID On Last Command
5. Terminal ID Format Error
6. Display Formatting Error (15-line terminal only)

Events
WDterm events occur when a specific condition is met. When an event is "fired", an
event handler function in your application is called.

Though the details of exactly how it is done varies from one programming environment
to the next, the source code skeletons for the various event handlers are automatically
generated and inserted into your source code for you. See the samples for more specific
information.

Each event passes relevant information to your event handler function. The only event
that does not pass any data is OnTermBaseRegister. All others pass at least the
Terminal ID on which the event occurred. OnTermData also passes the data that was
keyed or scanned into the terminal.

Terminal ID is always passed as 0-63. A Terminal ID value of 99 indicates an error.

Once you have the event handler skeletons, you can proceed to add whatever
functionality you desire to each event.

You must call the OpenDevice method before any events can be fired.

NOTE: If you are experiencing problems with exception errors, make sure you are not
calling any WDterm methods from inside WDterm event handlers. Instead use the event
handlers to set program variables that are monitored elsewhere (perhaps in a timer event
handler). Call WDterm methods from the monitoring function.

OnTermBaseRegister
Event: An attached base station has successfully powered up and communicated with

the host computer via the serial connection.

OnTermSignIn15
Data passed: terminal
Event:A 15-line terminal has signed in. Terminal ID is passed in terminal.

OnTermSignIn6
Data passed: terminal
Event: A six-line terminal has signed in. Terminal ID is passed in terminal.

OnTermSignIn4
Data passed: terminal
Event: A four-line terminal has signed in. Terminal ID is passed in terminal.

OnTermSignOut
Data passed: terminal
Event: A terminal has signed out. Terminal ID is passed in terminal.

OnTermData
Data passed: terminal, data
Event: A terminal has sent data in response to an Input method call.

OnTermNotSignedIn
Data passed: terminal
Event: A command has been sent to a terminal that is not signed in.

OnTermSequenceError
Data passed: terminal
Event: The one-for-one host prompt/terminal response protocol has been violated.

The host cannot send a second Input command until it has received a response
from the first Input command. If a base station receives 5 sequence errors in a
row, a Host Logic error is generated and the base shuts itself down. While
PromptCom/ActiveX will intercept and prevent most logic errors, they are still
possible so you should implement this event handler!

OnTermIllegalCommand
Data passed: terminal
Event: An illegal command has been sent to a terminal. PromptCom/ActiveX is

designed to prevent illegal commands but software is not always perfect and we
may not have imagined all the ways in which our customers will want to use it!

OnTermUpArrow
Data passed: terminal
Event: The up-arrow button has been pressed on a terminal. You must issue another

Input method call before WDterm can respond to another keypress on the
terminal. If you have already entered some data on the terminal and press an arrow
key, this event will not fire. See the programming section in the RF Terminal
manual for details.

OnTermDownArrow

Data passed: terminal
Event: The down-arrow button has been pressed on a terminal. You must issue

another Input method call before WDterm can respond to another keypress on the
terminal. If you have already entered some data on the terminal and press an arrow
key, this event will not fire. See the programming section in the RF Terminal
manual for details.

OnTermLeftArrow

Data passed: terminal

Event: The left-arrow button has been pressed on a terminal. You must issue another
Input method call before WDterm can respond to another keypress on the
terminal. If you have already entered some data on the terminal and press an arrow
key, this event will not fire. See the programming section in the RF Terminal
manual for details.

OnTermRightArrow

Data passed: terminal
Event: The right-arrow button has been pressed on a terminal. You must issue another

Input method call before WDterm can respond to another keypress on the
terminal. If you have already entered some data on the terminal and press an arrow
key, this event will not fire. See the programming section in the RF Terminal
manual for details.

OnTermBeginKey

Data passed: terminal
Event: The BEGIN button has been pressed on a terminal. You must issue another

Input method call before WDterm can respond to another keypress on the
terminal. If you have already entered some data on the terminal and press the
Begin key, this event will not fire. See the programming section in the RF
Terminal manual for details.

OnTermEndKey

Data passed: terminal
Event: The END button has been pressed on a terminal. You must issue another Input

method call before WDterm can respond to another keypress on the terminal. If
you have already entered some data on the terminal and press the End key, this
event will not fire. See the programming section in the RF Terminal manual for
details.

OnTermSearchKey

Data passed: terminal
Event: The SEARCH button has been pressed on a terminal. You must issue another

Input method call before WDterm can respond to another keypress on the
terminal. If you have already entered some data on the terminal and press the
Search key, this event will not fire. See the programming section in the RF
Terminal manual for details.

